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Abstract

In this paper, the idea of persistent coverage to be accomplished by multiple
agents while avoiding collisions is considered and developed. The persistent
coverage problem is formulated by assuming that the coverage degrades over
time. In this framework, our contribution is a new distributed control law
which is capable of carrying out the persistent coverage without computing
agents’ paths explicitly. The proposed setup considers agents with nonholo-
nomic motion constraints and it is based on the combination of local and
global strategies to achieve efficient coverage while avoiding bottlenecks such
as local minima. The local strategy is based on the gradient of the cover-
age error in the neighborhood of an agent whereas the global strategy leads
the agents to uncovered areas of the domain. Furthermore, we present a new
bounded potential repulsion law and a proof of safe navigation is provided for
the case of unicycle vehicles. We also propose a modification of the tangent-
bug algorithm to deal with multiple non-point agents which allows the team
to navigate in environments with non-convex obstacles in a reactive manner.
Simulation results illustrate the performance of the proposed control law.
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1. Introduction

The problem of area coverage by a team of agents is of interest in a wide
variety of applications such as: cleaning Luo et al. (2003), lawn mowing
Arkin et al. (2000), monitoring Zheng et al. (2010), etc. In general, the use
of multiple agents to solve this problem enhances the coverage performance
by, for example, decreasing the coverage time. However, multiple agents
introduce additional issues like collision avoidance and coordination of agents.

In the case of static coverage the agents are assumed to be able to cover
an area by being placed at particular positions Drezner (1995). However,
if the agents are mobile, it is possible to deploy the resources and adapt
their positions to a variety of environments. Deployment has been solved
through different approaches: with Voronoi partitions Cortés et al. (2004),
Gusrialdi et al. (2008), by using potential fields Popa et al. (2004), Cassandras
and Li (2005); Mataric et al. (2002), or with gradient methods Zhong and
Cassandras (2010). In dynamic coverage problems agents are assumed to
have a limited sensing range and can not cover the domain statically, that
is, by any deployment. To accomplish the task, some approaches compute
a path explicitly Choset (2001), Smith et al. (2012), Hokayem et al. (2007),
whereas others solve the problem without computing a path Hussein and
Stipanović (2007), Franco et al. (2012a,b). If the environment is invariable,
the problem is solved by covering all the points once Choset (2001), Hussein
and Stipanović (2007), Franco et al. (2012a,b). However, some tasks require
to re-cover all the points over time because the environment evolves and the
task is to monitor the area persistently Smith et al. (2012), Hokayem et al.
(2007), Jones et al. (2007). Our work is focused on the latter scenario which
we refer to as the persistent coverage.

A relevant issue that arises when dealing with multiple agents and en-
vironments with obstacles is the problem of collision avoidance. Obstacle
avoidance for navigation purposes has been addressed by many different
strategies: potentials Khatib (1985), vector field histogram Borenstein and
Koren (1991), dynamic window approach Fox et al. (1997), elastic bands
Quinlan and Khatib (1993), nearness diagram navigation Minguez and Mon-
tano (2004), and model predictive control Saska et al. (2013), to name a
few.
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In the field of coverage, the work presented in Breitenmoser et al. (2010)
introduces the tangent-bug algorithm to avoid convex obstacles and develop
deployment in multi-agent environment. However, they consider point agents
and do not consider inter-agent avoidance. On the other hand inter-agent
avoidance has been commonly treated with a repulsive force that grows rel-
ative to the proximity among the agents. In Chang et al. (2003) and Mosh-
tagh et al. (2009) authors introduce forces that modify the angular velocity
whereas Liu et al. (2006), Dimarogonas et al. (2006) introduce a repulsive
force that modifies both module and direction of the motion toward the main
objective. In the field of dynamic coverage with sensors networks, Hussein
and Stipanović (2007) introduce a scheme based on the collision avoidance
ideas from Stipanović et al. (2007). In those papers inter-agent avoidance is
solved but obstacle avoidance is not addressed.

In this work, we focus on the problem of persistent coverage control by a
team of nonholonomic agents in an environment with a coverage decay. We
propose a coverage control law based on ideas introduced in Franco et al.
(2012a,b) where a local strategy and a global strategy are combined. We
begin by proposing a new model for the evolution of the coverage, based on
a differential equation that evolves between zero and a maximum coverage
level. The behavior of the model can be tuned with two gains, the sensing
gain and the decay gain, to adjust the values for different scenarios.

To develop persistent coverage we propose reactive strategies that do not
compute a path explicitly. We use a strategy based on the gradient of the
coverage error to find the best direction to move instantaneously. As gradient
strategies may get trapped in local minima, we combine the local strategy
with a global strategy that leads agents to uncovered areas. Both strategies
are continuously weighted in such a way that agents obey their local control
laws if the error in their neighborhoods is high, and they move to new areas
obeying the global control law when there is no benefit in covering the nearby
areas. To reach uncovered areas by avoiding obstacles and other agents in a
reactive fashion we use the tangent-bug algorithm Kamon et al. (1998) with
a modification which allows the algorithm to work in environments with
multiple non-point agents. Once the coverage action is obtained from the
local and global strategy, it is combined with a new bounded repulsion law.
The coverage control law and the repulsion law are weighted depending on
the danger of collision to obtain the desired motion.

Finally, with the target motion we design a control law to govern the non-
holonomic agents. The angular velocity input is proportional to the angular
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error, and the linear velocity input takes into account the maximal speed of
the agent, the local coverage error, the angular error, the distance to global
goals and the danger of collision. If the local coverage error is high, the speed
is decreased to provide a better coverage of the neighborhood. If the local
coverage error is low, the speed is increased for the agent to leave the covered
area. The speed is also decreased as the angular error gets larger to avoid
high linear speeds while turning, and as agents approach global targets and
obstacles. In this paper, the coverage information and the global strategy is
centralized but the motion is agent-based. This is done to reduce the com-
munication costs and increase the flexibility to changing environments while
keeping a good level of efficiency. In fact, each agent can compute the cov-
erage map, and the global goal of each agent is achieved with only position
information.

Specifically this paper provides the following items as the main contribu-
tions:

• An algorithm that develops persistent coverage without computing ex-
plicitly agents’ paths.

• An adaptation of the tangent-bug algorithm to multi-agent environ-
ments, to allow multiple non-point agents to reach their global goals in
unconnected environments or with non-convex obstacles.

• A new bounded potential repulsion law for agents that allows safe
navigation for unicycles. Furthermore, proofs of collision avoidance
in multi-agent environments with obstacles are provided.

The paper is organized as follows: Section 2 introduces the problem for-
mulation and the model of the evolution of the coverage. Section 3 presents
the coverage strategy and the repulsion law. Section 4 describes how coverage
and collision avoidance objectives are combined, presents the nonholonomic
motion control law, and provides collision avoidance proofs. Section 5 pro-
vides simulation results of the proposed algorithm in different environments.
Finally, Section 6 presents the conclusions of the paper.

2. Problem formulation

In this section we introduce the problem formulation and a new evolution
coverage model for a team of agents performing dynamic coverage tasks. We
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abuse notation by including the dependencies of the variables only when they
are defined. One of the main objectives is to reach a desired coverage level
Λ∗(x) ∈ R+ for all the points x ∈ Dx over a bounded domain Dx ⊂ R2. We
assume that mobile agents behave as differential drives, that is, each agent
Ai of the team A = {A1, . . . , AN} of N agents is governed by the following
model:

ṗi1 = vi cos(θi),

ṗi2 = vi sin(θi),

θ̇i = ωi,

(1)

where ṗi(t) = [ṗi1(t), ṗi2(t)]
T is the motion vector of the i-th agent, pi(t) =

[pi1(t), pi2(t)]
T is the position of the i-th agent in a domain Dp ⊂ R2, θi(t) ∈

(−π, π] is the orientation angle, vi(t) ∈ R is the input velocity, and ωi(t) ∈ R
is the input angular velocity. Let us define r(x, pi) ∈ R as the Euclidean
distance between a point x and the position of agent pi, and αi(r) ∈ R as
the coverage action that the i-th agent develops over points at distance r
inside each agent’s actuator domain (or footprint which will be used inter-
changeably) Ωi(pi, R) ⊂ R2. In this work, we restrict to circular actuators
with limited range R ∈ R+ so that their coverage function αi is:{

αi ≥ 0 if r < R (x ∈ Ωi),
αi = 0 if r ≥ R (x 6∈ Ωi).

(2)

In Section 5 we give an explicit example of a coverage actuator function.
Then, the actuator domain of each agent Ωi is the area where the agent is
developing coverage action, and it varies over time with the position of the
agent. Note that Dp, which is the domain of all positions reachable by the
agents, can be different from Dx, which is the domain of the points to be
covered. The points of Dx just need to be to R or closer to any point of Dp in
order to be covered. The coverage action of the team of agents is defined as
α =

∑
i∈{1,...,N} αi. Furthermore we define Λ(t, x) ∈ [0, Λ̄(x)) as the coverage

level developed by a team of agents over a point x at time t, where Λ̄(x) ∈ R+

is the maximum reachable coverage.
Here we propose a new model for the evolution of the coverage level.

The coverage information is updated continuously at each point x with the
following differential equation:

∂Λ

∂t
= Ks(Λ̄− Λ)α−KdΛ (3)
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where Ks ∈ R+ is the coverage gain, Kd ∈ R+ is a gain that represents the
decay of the coverage, and the term (Λ̄−Λ) can be interpreted as the intensity
of covering point x. The dynamic behavior of the model can be changed by
modifying Kd and Ks to adapt to different applications. Notice that in the
case that (Λ̄−Λ) is constant, (3) is equivalent to a first order linear system.
We assign Λ(0, x) = 0, ∀x ∈ Dx, which means that at the beginning all
points are assumed as uncovered. With this initial value, the model solutions
are bounded and evolve between no coverage, with Λ = 0 and the maximum
reachable coverage Λ = Λ̄. The main difference with respect to other models
with decay as, for example, the one proposed in Hübel et al. (2008), is that
it is possible to select independently the maximum reachable coverage, the
decay rate and the coverage gain, whereas in other proposals these quantities
are coupled. This provides the possibility of modeling additional scenarios as,
for example, snow removal, lawn mowing or confidence in surveillance, since
the decay is very slow compared to the coverage ability, and the maximum
coverage is not necessarily related to these values. Fig. 1 shows an example
of the values that Λ takes at one point with two different dynamics but the
same coverage objective Λ∗, maximum coverage level Λ̄ and coverage action
α. The maximum coverage level is reached quickly when the coverage action
is applied, and it decays slowly when the action is null. As the sensing gain
increases the system reaches the maximum coverage faster and as the decay
gain increases the coverage degrades faster. Notice that as the maximum
coverage level is higher than the coverage objective, the objective can be
fulfilled during some time after the applied action is null.

Here, we introduce the lack of coverage Υ(t, x) ∈ R+ over a point x at
time t as:

Υ = max

(
0,

Λ∗ − Λ

Λ∗

)
. (4)

Note that Υ is a measurement of the coverage error at each point scaled with
the desired coverage level Λ∗, and that we only take positive lack of coverage.
In this way, we consider coverage problems where the excess of coverage is
not harmful. Moreover, we introduce Φ(x) ∈ (0, 1], ∀x ∈ Dx, as the priority
to cover each point x. Φ is a map that weights the significance of the points
in the domain to give more priority to particular zones of special interest.

At this point let us define the error function eDx(t) ∈ [0, 1] over the whole
domain as:

eDx =

∫
Dx

Υ Φ dx∫
Dx

Φdx
, (5)
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Figure 1: Evolution of Λ at one point in two different scenarios with different parameters.
Dotted line represents a system with Ks = 1/500 and Kd = −1/4000 whereas dashed line
represents a system with Ks = 1/250 and Kd = −1/2000. Solid thin line represents the
coverage action α which is 20 at the beginning and 0 after 200 units of time.

and the error function of the actuator domain of each agent eΩi(t) ∈ [0, 1] as:

eΩi =

∫
Ωi

Υ Φ dx

πR2
. (6)

3. Dynamic coverage control laws

The crucial objective of our proposed distributed control law is to keep
decreasing the error eDx . Let us now divide the domain into the points
which have positive lack of coverage D+

x (Υ) = {x ∈ Dx|Υ > 0}, and the rest
D0
x(Υ) = {x ∈ Dx|Υ = 0}. Notice that both domains are complementary

and their union is the whole coverage domain Dx. The domains depend on
time since the sign of Υ changes as the domain is covered by the agents or
become uncovered due to the decay. We want to minimize the variation of
the error of each agent with respect to its own position, dropping

∫
Dx

Φdx
because it is just a scaling factor. We compute the derivative of the error
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over time as Flanders (1973):

deDx
dt

=
d

dt

(∫
D+
x

ΥΦdx+

∫
D0
x

ΥΦdx

)
=∫∫

D+
x

∂Υ

∂Λ

∂Λ

∂t
Φdx1dx2 +

∮
D+
x

ΥΦ

(
∂x1

∂t
∂x2 −

∂x2

∂t
∂x1

)
, (7)

where D+
x is the boundary of D+

x and x = (x1, x2). In the integration we take
out the points that do not have lack of coverage and, as the limits of integra-
tion of D+

x depend on the derivative variable, we apply the Leibniz integral
rule to the case of two dimensions in the Cartesian coordinates (x1, x2). We
obtain two terms, the variation inside the domain, and the variation of the
boundary. Notice that Υ on the boundary is 0 by definition of the domain
and thus the second term is 0. By substituting (3) into (7) we get:

deDx
dt

=

∫
D+
x

(KdΛ−Ks(Λ̄− Λ)α)
Φ

Λ∗
dx =∫

D+
x

KdΛ
Φ

Λ∗
dx−

N∑
i=1

∫
D+
x
⋂

Ωi

Ks(Λ̄− Λ)αi
Φ

Λ∗
dx. (8)

The first term is the degradation of the information, which increases the
error and takes place over the whole domain. The second term represents
the agent’s coverage action over the domain and it reduces the error. The
amount of coverage developed by the agents depends on the error over Ωi,
which is the actuator’s footprint that depends on the position of the i-th
agent. Thus, it is possible to decrease the variation of the error with respect
to the position of the agents by decreasing this term. As we aim for a
distributed control law, we would like to optimize this term with respect to
the position of each agent.

3.1. Local control law

Instantaneously we can locally compute the action to decrease the error
function with the gradient ugradi (t) ∈ R2 for each agent i:

ugradi = −
∫
D+
x
⋂

Ωi

Ks(Λ̄− Λ) · ∂αi
∂r

(pi − x)

‖pi − x‖
Φ

Λ∗
dx. (9)

Equation (9) can be seen as the gradient of the integral on the right hand side
of equation (8) with respect to pi, that is, the position of the agent i. Note

8



that since error function is only a function of time, we cannot mathematically
write this expression as the gradient of ∂e/∂t with respect to pi. From this
equation we can extract the direction of the motion ûloci (t) ∈ R2 to get the
maximum benefit covering the neighborhood of the agent as:{

ûloci =
ugradi

‖ugradi ‖
if ‖ugradi ‖ 6= 0,

ûloci = (0, 0)T if ‖ugradi ‖ = 0.
(10)

However, gradient techniques are known to get trapped in local minima and,
when the local error eΩi is low, the benefit of covering the neighborhood
of an agent is small. Because the information decays in other subareas of
the domain, it may happen that the error over the domain eDx increases.
Therefore, it is advisable to combine this gradient with a global law ugloi (t) ∈
R2 that depends on the coverage of the whole domain to bring the agents to
places with higher error and improve the overall performance of the coverage.

3.2. Global control law

To reach other areas in the domain with higher error in an environment
with obstacles, we propose the use of a modified version of the tangent-bug
algorithm. Tangent-bug is a reactive algorithm which ensures that a sin-
gle agent with range sensor will reach its global goal if there exists a path
to reach it as presented by Kamon et al. (1998). Roughly speaking, it is
based on searching for free directions within the sensor range, and follow-
ing the boundary of obstacles if there is no free direction toward the goal.
Tangent-bug algorithm has been developed in environments with one agent
and static obstacles. In multi-agent environment there are no guarantees of
goal reaching. For example, in the case that two non-point agents are follow-
ing the boundary of the same obstacle in opposite directions and they meet,
they will leave the obstacle in perpendicular direction, going both in parallel
trajectories trying to follow a contour which is moving at the same velocity
as the agents. Therefore, both agents can move continuously and without
stopping.

To solve this issue, we propose a modification. It consists in leaving the
contour if the only obstacles detected are other agents. Then if the segments
that connect the agents’ position and their respective objectives intersect,
all the agents, but the one nearest to its objective, stop. Thus the stopped
agents are treated as static obstacles and keep the guarantee of reaching the
goal. When those segments do not intersect, the agents start the search for a
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Figure 2: Blocking example of tangent-bug algorithm applied to multi-agent environments
and behavior with our modification proposal. Agents are represented by grey circles,
black area represents the obstacle and the goal of the i-th agent is denoted by Gi. Figure
(a) represents the behavior of the standard tangent-bug algorithm proposed by Kamon
et al. (1998). Figure (b) represents the behavior of the modified tangent-bug proposed if
trajectories between the agents to their goals do not intersect. Figure (c) represents the
modified algorithm if trajectories intersect.

new free direction to move. This modification guarantees that agents do not
leave the domain and assures that the agents never stop performing coverage
of the domain.

An example is depicted in Fig. 2. The agents start at dark grey posi-
tions and they start moving toward Gi along straight lines until they detect
the obstacle. Then, they decide to go toward the center of the U-shaped
obstacle since that direction of the outline is closer to the direction of the
goal. Afterwards, both follow the contour until they meet. With the stan-
dard tangent-bug algorithm, once they meet, they move in parallel ways to
infinity, following the dotted lines as plotted in Fig. 2.(a). After the agents
meet, if they stop following the boundary once they detect just mobile obsta-
cles, and they search for new free directions to move, they would go straight
toward the goal until they find and follow the boundary again, this time in
opposite directions while reaching the goal 2.(b). Let us focus now in the sit-
uation in Fig. 2.(c). In that case, when both agents meet with the standard
tangent-bug algorithm, the agents will go in parallel to infinity as depicted
in Fig. 2.(a). With our proposal, since the segment G1p1 intersects with
G2p2 the agent which is further to the objective stops. Then, agent 2 moves
around it, and when both segments do not intersect, agent 1 can continue
following the contour until it reaches G1.

Thus, the modified tangent-bug algorithm provides a direction to move
ûgloi (t) based on a goal position p∗i (t) ∈ Dp, from where uncovered points
can be reached by the agents, and a set of obstacles. After obtaining the
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direction to move, the desired global action ugloi is computed with:

ugloi = kgloi ûgloi (11)

where kgloi (‖pi − p∗i ‖) ∈ (0, 1) is a function that depends on the distance to
the goal. A good choice we propose is the following one:

kgloi = tanh

(
2‖pi − p∗i ‖

R

)
. (12)

This function is close to 1 until the distance from an agent to a goal is almost
the coverage radius R, and then, it decreases. It allows the agents to reach
the goals quickly, and then slow down when the goals are being accomplished.

The selection of the global goals p∗i is made through a strategy which finds
areas with high error. It is based on blob detection of the uncovered infor-
mation Franco et al. (2012a, 2013). We use this image processing algorithm
to find uncovered areas, and then we compute their centroids ψj ∈ R2 and
their coverage error, eψj ∈ R where j ∈ 1, ...,M , by integrating the coverage
error of each blob’s area,. The objective p∗i for each agent i is chosen by
weighting distances to the centroids and coverage error of each blob. Each
agent i obtains for each centroid j a score 0 < S(i,j)(t) ≤ 2 to compose a
matrix S of dimension N ×M , in the following way:

S(i,j) =

(
1− ‖pi − ψj‖

max(‖pi − ψj‖)

)
+

eψj
max(eψj)

. (13)

Then, the global goals are assigned using the Algorithm 1 which matches a
global goal with each agent taking into account the matrix of scores S. The
algorithm is repeated N times, each time finding the maximum score and
pairing the corresponding objective j with an agent i. After each match is
made, the algorithm reduces the score of all the centroids for agent i by 2N
units to prevent the assignment of a new centroid to the same agent. Then,
the algorithm also reduces the score of the centroid by 2 units (the maximum
possible score) for all agents. If there are more agents than centroids, the
aim is to produce an even distribution of the agents amongst the centroids.
On the other hand, if there are more centroids than agents, the algorithm
will assign each agent to a different centroid
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Algorithm 1 Assignation of objectives

Require: S, Ψ
Ensure: p∗i

1: repeat
2: [i, j] = {i, j : S(i,j) = max(S)};
3: p∗i = ψj;
4: S(i,:) = S(i,:) − 2N ;
5: S(:,j) = S(:,j) − 2;
6: until All agents have an objective

3.3. Coverage control law

To combine both global and local control laws let us introduce a local
weight W loc

i (t) ∈ [0, 1] and a global weight W glo
i (t) ∈ [0, 1] as:

W loc
i = eβΩi (14)

W glo
i = 1− eβΩi (15)

where the exponent β ∈ R+ is a parameter to be tuned depending on the
desired behavior of the algorithm and the parameters of the problem. Further
details will be provided in Section 5. The target direction of the coverage
ucovi ∈ R2 is obtained with:

ucovi = W loc
i ûloci +W glo

i ugloi . (16)

The weights force the agents to obey the local control law when the local
error eΩi is high, moving to the direction of the gradient of the error, and
force the agents to obey the global control law when the local error is low,
heading toward new uncovered areas.

3.4. Collision avoidance

In this section we propose a new repulsive control law for agents with
range sensors which is bounded, and has a limited range of actuation. We
start by introducing dil(t) ∈ R+ as the Euclidean distance between the posi-
tion of the agent pi and the detected position of an obstacle pl(t) ∈ R2 with
l ∈ {1, ..., L}. Notice that the detected obstacles include other agents and
static obstacles and from the point of view of the repulsion control law there
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x

Figure 3: Variables involved in the computation of kcolil at (17). The grey circle represents
the security region of agent i, the dashed line the avoidance region and the black circle
represents the obstacle l.

is no need to distinguish between them. The avoidance gain for each obstacle
kcolil (dil) ∈ R+ is computed as:

kcolil =

(
1

2
+

1

2
cos

(
π
dil − rsafi

ravoi − rsafi

))γ

, dil < ravoi (17)

where rsafi ∈ R+ is the safety distance and ravoi ∈ R+ is the avoidance
distance, i.e., the distance at which the repulsive action starts. Variables
involved are shown in Fig. 3. In addition, γ ∈ R+ is a parameter that allows
changing the shape of the repulsion (as illustrated in Fig. 4). Higher γ allows
approaching obstacles closer or passing through narrower corridors, thus im-
proving the coverage performance but also reducing the security margin for
collisions. The repulsive force ucolil (t) ∈ R2 of an agent i to an obstacle l is
computed as:

ucolil =
p̂il

dil − rsafi

, (18)

where p̂il(t) ∈ R2 is the normalized vector between the position of the agent
pi, and the position of the detected obstacle pl. To obtain the resultant
direction ûcoli (t) ∈ R2 of the avoidance action of agent i we normalize the
sum of the repulsive forces as,

ûcoli =

∑L
l=1 u

col
il

‖
∑L

l=1 u
col
il ‖

. (19)

The direction of the repulsive force is then a weighted sum of the repulsive
forces for each obstacle. The obstacles that are nearer weight more than
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Figure 4: Avoidance gain kcolil for different values of γ.

the obstacles that are further away. We also compute the resultant colli-
sion avoidance gain kcoli (kcolil ) ∈ R as the maximum of the repulsive collision
avoidance gains:

kcoli = max
l
{kcolil }. (20)

Then, we propose the following total avoidance action ucoli (t) ∈ R2 for each
agent:

ucoli = kcoli ûcoli . (21)

4. Safe coverage

In this section we show how to combine the control laws related to cover-
age and obstacle avoidance in order to accomplish both objectives. We also
propose a control law for the nonholonomic model considered. First, we intro-
duce coverage gain as the complementary of the collision gain kcovi (t) = 1−kcoli
and then we compute the desired motion action ui(t) ∈ R2 as:

ui = kcovi ucovi + ucoli = kcovi ucovi + kcoli ûcoli . (22)

Then, we can extract the desired orientation θdi(t) ∈ (−π, π] for the unicycle,
from the components of ui as:

θdi = atan2(ui2 , ui1). (23)

14



Applying a proportional controller to the minimum angular distance, we get
the angular velocity input:

ωi =


kωi(θi − θdi + 2 · π) if (θi − θdi) < −π

kωi(θdi − θi) if − π ≤ (θi − θdi) ≤ π
kωi(θi − θdi − 2 · π) if (θi − θdi) > π

(24)

where kωi ∈ R+ is the angular velocity gain.
If we define the angular error eθi(t) ∈ [0, 2] as:

eθi =


(θi−θdi+2·π)

π/2
if (θi − θdi) < −π

|θdi−θi|
π/2

if − π ≤ (θi − θdi) ≤ π

− (θi−θdi−2·π)

π/2
if (θi − θdi) > π

(25)

then to control the linear velocity we propose:

vi = kvi(1− eΩi)(1− eθi)‖ui‖ (26)

where kvi is the velocity gain of agent i and its maximum value must be the
maximum speed of the agent. Note that by definition vi ∈ [−kvi , kvi ]. The
term (1− eΩi) forces the agent to stay in uncovered zones when eΩi → 1, or
makes it go faster to leave covered zones when eΩi → 0. The term (1 − eθi)
allows the agent to choose maximum backward or forward velocity, when the
desired angle and the angle of the agent are aligned, or slow the agent down
as the minimum angular distance (min{|θi− θdi |, |θdi − θi|}) approaches π/2,
when movement cannot be developed in the desired direction because of the
nonholonomic constraints and 0 ≤ ‖ui‖ ≤ 1.

Lemma 1. The projection of the motion vector of agent i (governed by (1)
with the control laws (24), (26)) denoted by ṗi on the desired direction is
always non-negative. Thus,

cos(ṗi, ui) ≥ 0, (27)

Proof. Let us compute a change of coordinates in which θdi is aligned with
the first coordinate of the new system, and therefore θdi = 0, i.e. we use
the desired orientation as a reference frame. Let us keep the names of the
variables in the new coordinate system invariable. Analyzing the sign of the
terms of ṗi1 after substituting (26) in (1) as:

ṗi1 = kvi(1− eΩi)(1− eθi)‖ui‖ cos(θi), (28)
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we see that kvi > 0, (1− eΩi) ≥ 0, and ‖ui‖ ≥ 0. Thus, let us pay attention
to terms (1− eθi) and cos(θi). As it is well known,

cos(θi) ≥ 0 if 0 ≤ |θi| ≤ π/2, (29)

cos(θi) < 0 if π/2 < |θi| ≤ π. (30)

Furthermore, it is easy to evaluate (25) by substituting θdi = 0 and θi in the
range [−π, π). The results are:

(1− eθi) ≥ 0 if 0 ≤ |θi| ≤ π/2, (31)

(1− eθi) < 0 if π/2 < |θi| ≤ π. (32)

Therefore both terms always have the same sign and then:

cos(θi) · (1− eθi) ≥ 0 ∀ θi. (33)

Consequently, ṗi1 ≥ 0 ∀θi and the projection of the motion vector of
agent i on the desired direction is always non-negative, which is equivalent
to cos(ṗi, ui) > 0.

Note that when |θi−θdi | < π/2 agent i moves forward, i.e., vi > 0, and when
|θi − θdi | > π/2 agent i moves backwards since vi < 0. In this way agents
obey the desired directions of movement.

Lemma 2. If the distance between the i-th agent and any obstacle is smaller
than d0.5, where:

d0.5 = rsafi +
1

π
arccos(2

γ
√

0.5− 1)(ravoi − rsafi ), (34)

then, the projection of the desired motion action of the i-th agent ui on the
avoidance action ûcoli is always positive

cos(ui, û
col
i ) > 0. (35)

Proof. We compute (35) as:

cos(ui, û
col
i ) =

ui · ûcoli
‖ui‖ · ‖ûcoli ‖

, (36)
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Substituting (22) in (36) we have:

cos(ui, û
col
i ) =

(kcovi · ucovi + kcoli · ûcoli ) · ûcoli
‖ui‖ · ‖ûcoli ‖

. (37)

Here, let us consider a change of coordinates such that the first coordinate of
the coordinate system is aligned with ûcoli . Let us also keep the same notation
in the new coordinate system. As a consequence we have ûcoli = (1, 0) and in
the new coordinate system (37) is equivalent to:

cos(ui, û
col
i ) =

kcovi · ucovi1 + kcoli
‖ui‖ · ‖ûcoli ‖

, (38)

where ucovi1 is the first component of ûcovi . Notice that ‖ui‖ ∈ [0, 1] and
‖ûcoli ‖ = 1 and thus they do not affect to the sign of the cosine. Furthermore,
substituting dil ∈ [rsafi , d0.5) into (17) we obtain kcolil ∈ (0.5, 1] and therefore
kcovi = (1 − kcoli ) ∈ [0, 0.5). Also, notice that ‖ucovi ‖ ≤ 1 and also that
|ucovi1 | ≤ 1. Therefore:

kcoli > |kcovi · ucovi1 | if dil ∈ [rsafi , d0.5) (39)

and then:

cos(ui, û
col
i ) =

kcovi · ucovi1 + kcoli
‖ui‖ · ‖ûcoli ‖

> 0, (40)

As cos(ui, û
col
i ) > 0 then ûiûcoli ∈ (−π/2, π/2) and the projection of the

desired motion action of the i-th agent ui over the avoidance action ûcoli is
always positive when dil < d0.5 �

Note that if there is only one obstacle inside the agent detection range and
the distance is lower than d0.5, it would be moving away from it. Thus, on
the one hand the agent obeys the desired direction and on the other hand
the desired direction obeys the avoidance control law when the danger of
collision arises.

Lemma 3. An agent i with dynamics given in (1) and governed by the control
laws (24), (26) approaching an obstacle or other agents will keep a safety
distance with respect to all of them to be larger than rsafi .

dil > rsafi (41)
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Proof. Let us assume that we have an agent i surrounded by L obstacles
in a set O = {O1, ..., Ol, ..., OL}, no matter whether they are static obstacles
or other agents. Let us assume that the nearest obstacle is O1. Then, the
direction of our repulsive force can be computed with (19) as:

ûcoli =
p̂i1 ·Qi1 + ...+ p̂il ·Qil + ...+ p̂iL ·QiL

‖p̂i1 ·Qi1 + ...+ p̂il ·Qil + ...+ p̂1L ·Q1L‖
, (42)

where Qil = 1/(dil − rsafi ) from (18). We can compute the angle formed by
the total avoidance action with the avoidance action of the nearest obstacle
ûcoli1 û

col
i , and if it is in (−π/2, π/2) that means that the direction of the total

repulsive force is against the nearest obstacle. Let us proceed by computing
the cosine of both vectors as:

cos(ucoli1 , û
col
i ) =

|ucoli1 | · |ûcoli |
‖ucoli1 ‖ · ‖ûcoli ‖

, (43)

where ‖ucoli1 ‖ = Qi1 and ‖ûcoli ‖ = 1. Let us compute a change of coordi-
nates such that the first coordinate is aligned with ucoli1 and then ucoli1 =
(Qi1, 0, ..., 0). Let us also keep the notation the same in the new coordinate
system. After the change of coordinates we can compute the cosine as:

cos(ucoli1 , û
col
i ) =

Qi1 · ucoli1
‖ucoli1 ‖ · ‖ûcoli ‖

, (44)

where ucoli1 ∈ R is the first direction vector of ûcoli , which is computed as:

ucoli1 =
pi11 ·Qi1 + ...+ pil1 ·Qil + ...+ piL1 ·QiL

‖p̂i1 ·Qi1 + ...+ p̂il ·Qil + ...+ p̂1L ·QiL‖
. (45)

However, notice that ‖ucoli1 ‖ = Qi1 and that ‖ûcoli ‖ = 1. Therefore cos(ucoli1 , û
col
i ) =

ucoli1 , and then:

cos(ucoli1 , û
col
i ) =

pi11 ·Qi1 + ...+ pil1 ·Qil + ...+ piL1 ·QiL

‖p̂i1 ·Qi1 + ...+ p̂il ·Qil + ...+ p̂1L ·QiL‖
. (46)

Notice also that pi11 = 1 since ‖p̂i1‖ = 1 and it is aligned with the first direc-
tion vector of the coordinate system. Additionaly, as the agent is approaching
the nearest obstacle, Qi1 grows and:

lim
di1→rsafi

Qi1 = lim
di1→rsafi

1

di1 − rsafi

=∞ (47)
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As we consider non-point agents or obstacles, and limited avoidance range,
it is impossible to fit an infinite number of obstacles in the avoidance range
and then:

Qi1 > |pi21 ·Qi2 + ...+ pil1 ·Qil + ...+ piL1 ·QiL| if dil = rsafi . (48)

Consequently:
cos(ucoli1 , û

col
i ) = 1 if dil = rsafi (49)

Thus, when the distance to the nearest obstacle is rsafi the avoidance
action points against the nearest obstacle. By Lemma 2 the desired motion
obeys the avoidance control law if dil < d0.5. In the particular case of dil =
rsafi , kcovi = 0 and then:

cos(ui, u
col
i1 ) = 1 if dil = rsafi . (50)

As a consequence, the desired motion is opposite to the direction of the
nearest obstacle. Furthermore, by Lemma 1 agents respect the desired mo-
tion direction. Therefore:

cos(ṗi, u
col
i1 ) > 0 if di1 = rsafi (51)

Therefore, if an agent always moves toward the desired direction, and it is
governed by the avoidance control law, and the avoidance law points against
the nearest obstacle then, the distance to the nearest obstacle is always going
to be greater than rsafi . �

Lemma 4. A team of agents performing coverage with control law provided
in equations (9) to (26), in an environment without decay (Kd = 0) and with
R > d0.5, drives the coverage error of the domain to zero, that is, eDx → 0
as t→∞.

Proof. If Kd = 0 in (8) we obtain:

deDx
dt

= −
N∑
i=1

∫
D+
x
⋂

Ωi

Ks(Λ̄− Λ)αi
Φ

Λ∗
dx, (52)

which is always negative, or zero if the agents’ domain
⋃N
i=1 Ωi is covered.

deDx
dt

< 0 if
N∑
i=1

eΩi > 0 (53)

deDx
dt

= 0 if
N∑
i=1

eΩi = 0 (54)
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The latter (54) happens if the whole domain Dx is covered, and then eDx = 0.
And also when D+

x

⋂
Ωi = ∅ but D+

x 6= ∅, i.e., if the robots’ actuator domain
is covered but some point of the whole coverage domain Dx is not covered yet.
If D+

x

⋂
Ωi = ∅, then eΩi = 0 and consequently ucovi = ugloi . Global coverage

action is governed by the modified tangent-bug algorithm which guarantees
each agent to reach its goal position if there exists a path. If the goal position
p∗i provided is not covered yet, then to reach it implies to continue covering
the domain after some period of time. However, coverage action is combined
with the collision avoidance law. As introduced in Lemma 2 the desired
motion ui of agent i never goes against avoidance action if any obstacle is
closer than d0.5. Then, if the remaining points to be covered are close to the
obstacles, the agents will approach the obstacles at most d0.5. With R > d0.5

we guarantee that the points can be covered from reachable positions and
then a position where D+

x

⋂
Ωi = ∅ can be always reached when eDx > 0. If

it is possible to reach positions where de/dt < 0 always when eDx > 0 then,
it is possible to force the error to decrease until eDx = 0. �

In the case Kd 6= 0 and if agents cannot cover all the points of the domain
simultaneously, full coverage is not guaranteed. Since points in the domain
will increase its error continuously and covered points do not attract agents,
then agents will take some time to reach points which are covered and become
uncovered. However, it is guaranteed that the agents will not stop covering
the domain while eDx > 0. Note also that unless an agent is pushed against
an obstacle by other agents, it will approach obstacles at most a distance
equal to d0.5. Then, if R < d0.5 the points of the domain which are near an
obstacle will never be covered. A similar case might happen if two global
goals are side by side and two agents try to reach them in opposite direction.
Agents will try to reach them by the global control law, but the repulsion
law will prevent from approaching the other agent closer than d0.5 and then,
will prevent from reaching the goal. However, it is not necessary for the
agents to be at their global goals to cover them, and if R > d0.5/2 the goal
positions would be covered, and new goals would be assigned to the agents.
Finally, note that d0.5 can be tuned by increasing γ to make it as small as
rsafi and that it is very unlikely to have global goals for the agents being too
close. Our strategy selects the centroids of uncovered areas as goals for the
global motion control law. The areas with higher errors are selected firstly
as targets to the agents. Those areas use to be the bigger ones and then,
their centroids are far.
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Theorem 5. A team of agents whose dynamics are given by (1) and governed
by the control laws (24) and (26) in an environment with static obstacles,
develops persistent coverage without collisions.

Proof. The proof follows directly from Lemmas 3 and 4. �

5. Simulation results

In this section we show simulation results of the proposed control laws.
Firstly we introduce the coverage function of agent i:

αi(r) =

{
αM
R

(r2 −R2)2 r ≤ R
0 r > R

(55)

where αM is the maximum level of coverage and R is the range of the agent.
Note that other coverage functions could be chosen.

Using this coverage action we present a coverage simulation for 2000 units
of time over a square domain Dx of 100 × 100 units by a team of four agents.
The parameters of the coverage function are: Ks = 1/250, Kd = −1/2000,
Λ̄ = 100. The coverage objective is Λ∗ = 80 with a constant interest Φ = 1.
The parameters of the collision avoidance law are: ravoi = 8, rsafi = 3, γ = 1.
The parameters of the motion controller are: kvi = 1, kωi = 0.15, β = 1/3.
The parameters of the coverage action are: αM = 40, R = 10. Fig. 5 shows
the evolution of the coverage map. The agents first cover the domain, and in
approximately 1000 units of time it is almost covered. After that, the team
maintains the coverage level.

Fig. 6 shows the evolution of the total coverage error eDx which never
reaches 0 due to the decay of the information and thus, agents are continu-
ously moving to cover new points. Fig. 7 represents the linear and angular
velocities of each agent. Fig. 8 shows the distances between the contour
of the agents, which are always greater than 0, i.e. agents do not collide.
Fig. 9 shows the trajectories of the agents. For better clarity we depicted
the resulting paths from 0 to 1000 units of time, where the main coverage
action is performed, and from 1000 to 2000, where the agents have already
visited once all the points of the domain and the action consists in coverage
maintenance.

To analyze the influence of different parameters of the problem we provide
simulations in three environments. In the experiments we vary Ks and αM
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Figure 5: Evolution of the coverage map. Small circles represent the positions of the
agents, their coverage domain is represented by a dashed line, and the avoidance regions
are represented by the thin dotted line. Solid green straight lines represent the total action,
dotted green lines the global coverage actions, and solid blue lines the repulsion actions.
The small rhombi represent the global goals.
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Figure 6: Normalized coverage error evolution in simulation of Fig. 5.
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Figure 9: Trajectories of agents from t=1 to t=1000 (left) and from t=1000 to t=2000
(right) during simulation of Fig. 5. The paths of agents start at circles and end at crosses.
We divide the figures into two intervals of time for a better perception of the trajectories.
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Table 1: Testing environments and the corresponding values for the motion parameters.

Ks αM
Environment 1 1/500 40
Environment 2 1/250 40
Environment 3 1/250 80

according to Table 1. From environment 1 to 3, the actuation ability of
agents is increased. The rest of the common parameters are: duration of
3000 units of time, developed in a square domain Dx of 100 × 100 units.
The parameters of the coverage function are: Kd = −1/2000, Λ̄ = 100. The
coverage objective is Λ∗ = 80 with a constant interest Φ = 1.

5.1. Motion parameters: kvi vs β

In what follows, we provide 100 simulations with teams of three agents
starting at random positions combining each value of kvi = {1, 2, .., 10} and
β = {1/100, 1/50, 1/20, 1/10, 1/5, 1/3, 1/2, 1, 2, 3}. The parameters of the
collision avoidance law are: ravoi = 8, rsafi = 3, γ = 1. The angular velocity
gain is kωi = 0.15 and the coverage action range is R = 10.

In Fig. 10 we show the results of the simulations. From the first to the
third column the experiments are carried out in the environments 1, 2 and
3 respectively. In the first row we show the average steady coverage error
(eDx) of the 100 simulations carried out with each combination of parameters.
The second row presents the average path length (PL) traveled to develop
the coverage by the team of agents during the total number of simulations
(Nsim):

PL =

N∑
i=1

∫ 3000

t=0

‖ṗi‖ dt

Nsim

. (56)

The third row presents a combination of both values (M) defined as follows:

M(kvi ,β) =
PL(kvi ,β)

max (PL)
+

eDx(kvi ,β)

max (eDx)
. (57)

Lower values mean higher efficiency in the coverage process because a smaller
error with shorter path lengths is obtained. From the first to the third column
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Figure 10: Simulation results of Section 5.1. From first to third column, environments
1 to 3 are tested. In the first row we show the average steady error of the domain eDx

of the 100 simulations carried out with each combination of parameters. The second row
presents the average path length traveled (PL) to develop the coverage by the team of
agents. The third row presents an efficiency measurement (M) of the motion parameters.
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the experiments are carried out in the environments 1, 2 and 3, respectively.
As the linear speed gain kvi grows, the agents achieve a smaller coverage er-
ror, but also produce longer path lengths. Furthermore, the benefit obtained
increasing the speed decreases as speed grows, and saturates at a speed which
depends on the actuation ability of the agents. By combining both criteria,
the coverage error and the path length in the third row of Fig. 10 where M
is represented, we can conclude that the most efficient strategy for these en-
vironments is the one with β = 1/3, and kvi = 3, because it is a combination
of parameters that obtain the lowest value of M in the three environments.

5.2. Available resources: N vs R

In this subsection we analyze how the coverage is developed with different
available resources given the same three environments of previous section
(Table 1). We perform simulations with a variable number of agents N =
{1, 2, ..., 10} and variable actuator range R = {5, 10, ..., 50} combining each
value of N and R, and carrying out 100 simulations with each combination.
The parameters of the collision avoidance law are: ravoi = R, rsafi = 3, γ = 1.
The linear velocity gain is kvi = 3, the angular velocity gain is kωi = 0.15
and finally β = 1/3.

In Fig. 11 we show the results of the simulations. As in the previous
section, from the first to the third column the experiments are carried out
in the environments 1, 2 and 3, respectively. In the first row we show the
average steady coverage error (eDx) of the 100 simulations carried out with
each combination of parameters. The second row presents the average path
length traveled (PL), while coverage is performed by the team of agents. The
third row presents a combination of both values (M) showing efficiency and is
computed with (57). The average steady error decreases with the number of
agents and the range of actuation in all the environments. The path lengths
grow with the number of agents, but do not evolve monotonously with the
actuator range. For low values, R={5,10,15}, the path lengths grow with
the actuator range. As the agents cover a bigger area with larger coverage
ranges R, the speed grows to reach uncovered areas and then they produce
larger path lengths. With R > 15 the teams of agents reach a low steady
error rapidly and the agents start to run through covered areas following the
global control law. As they have a larger coverage action, it takes shorter
time to reach global goals. In the representation of M in the third row, it is
possible to obtain the optimal number of agents for a given actuator range
and viceversa in these environments.
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Figure 11: Simulation results of Section 5.2. From first to third column, environments
1 to 3 are tested. In the first row we show the average steady error of the domain eDx

of the 100 simulations carried out with each combination of parameters. The second row
presents the average path length traveled (PL) to develop the coverage by the team of
agents. The third row presents an efficiency measurement (M) of the motion parameters.
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Figure 12: Evolution of the coverage map with convex obstacles. Small circles represent
the positions of the agents, their coverage domain is represented by a dashed line, and
the avoidance regions are represented by the thin dotted line. Solid green straight lines
represent the total action, dotted green lines the global coverage actions, and solid blue
lines the repulsion actions. The small rhombi represent the global goals. The solid dark
gray blocks represent the obstacles.
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Figure 13: Normalized coverage error evolution of the simulation presented in Fig. 12.

5.3. Collision avoidance parameters and coverage with obstacles:

The parameters of the collision avoidance law have to be chosen according
to the size and dynamics of the agents. rsafi is the distance the i-th agent do
not violate and thus, it must correspond with the size of the security margin.
ravoi is the distance where the repulsion starts and then it must be equal or
smaller than the coverage range R to allow covering points near obstacles. γ
allows changing the slope of the intensity of the repulsion depending on the
distance. γ > 1 causes a soft repulsion if obstacles are around ravoi of the
agent, and a strong repulsion when agents are close to an obstacle, whereas
γ < 1 causes already a strong repulsion around ravoi .

We present now a simulation with 7 static polygonal obstacles and with
the same parameters as the first simulation provided in Section 5. The sim-
ulation is 2000 units of time long, developed in a square domain Dx of 100 ×
100 units. The team of agents is composed of 4 agents. The parameters of
the coverage function are: Ks = 1/250, Kd = −1/2000, Λ̄ = 100. The cov-
erage objective is Λ∗ = 80 with a constant interest Φ = 1. The parameters
of the collision avoidance law are: ravoi = 8, rsafi = 3, γ = 1. The parameters
of the controller are: kvi = 1, kωi = 0.15, β = 1/3. The parameters of the
coverage action are: αM = 40, R = 10. Fig. 12 shows the evolution of the
coverage map throughout the 2000 units of time. During the first 800 units
of time, the agents cover the domain, whereas the rest of the time, the team
maintains the coverage level.
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Figure 14: Actions of each agent during the simulation presented in Fig. 12. Solid lines
represent vi, and dotted lines represent ωi scaled ×4 for better visibility.
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Figure 15: Distance between the agents and the nearest obstacle detected by the range
sensor at every time in the simulation presented in Fig. 12. It can be seen that there are
no collisions since the distances are always greater than the safety distance of each agent
rsafi .
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Figure 16: Trajectories of agents from t=1 to t=1000 (left) and from t=1000 to t=2000
(right) of the simulation presented in Fig. 12. The paths of the agents start at circles and
end at crosses. Obstacles are represented by black blocks. They have been expanded by
ravoi from their actual boundaries (white dotted lines) to show the avoidance area. We
divide the figures into two intervals of time for a better perception of the trajectories.

Fig. 13 shows the evolution of the total coverage error. We consider that
the obstacles do not need to be covered and then the coverage domain is
reduced by the obstacles. Therefore, the coverage domain is smaller and the
transient time is lower. Fig. 14 presents the linear and angular velocities of
each agent. In spite of including a repulsion term, the smoothness of this law
produces a behavior very similar to the simulation without obstacles. Fig. 15
shows the distance between each agent and the nearest obstacle detected
by the range sensor through the coverage process and Fig. 16 shows the
trajectory of agents. In this figure, the obstacles have been dilated ravoi to
indicate the collision area. Both figures show that the agents develop safe
coverage avoiding static obstacles and other agents.

Finally, we present a simulation with two unconnected domains to be
covered. One of the domains is divided in two parts by an obstacle, and the
other one is bigger and contains a nonconvex obstacle. The parameters of
the problem are the same as the previous simulation except γ = 3 to allow
agents to enter in narrow U-shaped obstacles and kvi = 3. We also give a
different priority to the coverage of both zones. The priority of the larger
one is φ = 1 whereas the smaller one has a priority φ = 0.3. Fig. 17 shows
the coverage map during the first 2000 units of time, Fig. 18 the evolution
of the total error, and Fig. 19 the distance between each agent and the
nearest obstacle detected by the range sensor. Finally, Fig. 20 shows the
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trajectory of the agents. The chart shows that the larger area has a higher
density of trajectories because it has higher priority. In Fig. 21 the average
coverage level of both areas is presented. At the beginning of the simulation,
our strategy to find global objectives detect three unconnected areas (see Fig.
17, t = 1). Two of them are in the zone with the lower priority, and the other
one is in the zone with the higher priority. Since there are three agents on the
team, each agent moves towards one of the objectives and initially, the area
with lower priority, which is also smaller, is better covered than the area with
higher priority. However, once there are new global objectives (see Fig. 17,
t = 300), and more than one global objective is found in the bigger area, the
global objectives with a higher coverage error attract the agents. From that
moment on, the area with higher priority maintains a coverage level around
the objective whereas the area with lower priority has a lower coverage level
as expected. In spite of the significant difference in the coverage priority, the
difference in the coverage level is not so high. In this case, the team has a
high coverage ability and once the higher priority area has a coverage level
near the objective there is no error to attract the agents. Then, agents go
toward the lower priority area according to the coverage error. With a lower
coverage ability of the team of agents, by reducing the number of agents, their
speed of coverage action, the difference between the coverage levels of both
areas is higher. As it is shown in the figures, our methodology is effective
in the coverage of unconnected domains due to the blob based strategy and
it can also avoid nonconvex obstacles due to the application of the modified
tangent-bug algorithm presented in Section 3.2. It is also sensitive to the
priorities of different areas by developing a better coverage of the areas with
higher priority. Additionally, three videos of the simulations presented on
Figs. 5, 12, 17 are provided 1. There, the performance and smooth motions
of the agents can be observed.

5.4. Comments on the algorithm tuning

As shown, the problem of persistent coverage developed by a team of
nonholonomic agents is complex and there are many parameters involved.
Throughout the paper many parameters have appeared and the tuning of the
algorithm could seem complicated. However, the only parameters that need
to be adjusted are: β, ravoi , γ, kgloi , φ. The rest of the parameters represent

1http://webdiis.unizar.es/%7Eglopez/coverage.html
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Figure 17: Evolution of the coverage map with nonconvex obstacles and unconnected
domains. Small circles represent the positions of the agents, their coverage domain is
represented by a dashed line, and the avoidance regions are represented by the thin dotted
line. Solid green straight lines represent the total action, dotted green lines the global
coverage actions, and solid blue lines the repulsion actions. The small rhombi represent
the global goals. The solid dark gray blocks represent the obstacles.
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Figure 18: Normalized coverage error evolution of the simulation of Fig. 17.
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Figure 19: Distance between the agents and the nearest obstacle detected by the range
sensor at every time in the simulation presented in Fig. 17. It can be seen that there are
no collisions since the distances are always greater than the safety distance of each agent
rsafi .
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Figure 20: Trajectories of agents from t=1 to t=1500 (left) and from t=1500 to t=3000
(right) of the simulation of Fig. 17. The paths of the agents start at circles and end at
crosses. Obstacles are represented by black blocks. They have been expanded by ravoi

from their actual boundaries (white dotted lines) to show the avoidance area. We divide
the figures into two intervals of time for a better perception of the trajectories.
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Figure 21: Average coverage of the two areas of simulation of Fig. 17. Solid blue line
represents the average coverage of the bigger area, with φ = 1. Dashed red line represents
the average coverage of the smaller area, with φ = 0.3.
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characteristics of the environment or the robots and thus are imposed and
not subjected to changes. In particular, Λ̄, Ks, Kd represent the environment
and Λ∗ the requirement of the problem. rsafi , kvi , kωi , are characteristics of
the robots, namely their sizes, and maximum linear and angular velocities.
Finally, αi and R are characteristics of the available actuators.

Based on the theoretical analysis and simulation results provided we give
some tuning recommendations. β is the parameter which allows modifying
the importance of the coverage control law. With β > 1 the agents almost
only obey the global control law going from one global goal to another, with
0.1 < β < 1 both strategies have influence, and with 0 < β < 0.1 agents
follow almost only the local control law, thus obeying a gradient strategy.
Hybrid strategies, that is, the ones which take into account both global and
local strategies, are the ones that achieve a more efficient coverage. If the
team of agents have a high coverage capacity, for example a lawn mower
where the grass is cut instantaneously and it takes several days to grow
again, global strategy should has more weight and then β ' 1. On the
other hand, if the team has lower capacity to cover the environment then
β ' 1/10. A good compromise between both is 1/5 < β < 1/3. The
parameters of the collision avoidance law have to be chosen according to
the size and dynamics of the agents. ravoi is the distance where the repulsion
starts and then it must be equal or smaller than the coverage range R to allow
covering points near obstacles. γ allows changing the slope of the intensity of
the repulsion depending on the distance. If γ > 1 a soft repulsion is produced
when obstacles are around ravoi of the agent i, and a strong repulsion when
agents are close to obstacles, whereas γ < 1 causes already a strong repulsion
around ravoi . Higher γ requires more braking capacity from the agent but
also allows approaching more to obstacles, performing a better coverage of
the environment. A closer approaching is also achieved as ravoi decreases but
also requires more braking capacity. For kgloi we recommend values close to
1 until the distance from an agent to a goal is almost the coverage radius R,
and then decrease the value. It allows the agents to reach the goals quickly,
and then slow down when the goal is being accomplished. However, any other
function of similar characteristics could be chosen. Finally, φ represents the
importance of the zones to cover in such a way that constant φ makes the
agents to cover all the domain equivalently. However, as proposed in the last
of our simulations, if some area requires a better coverage, it can be selected
with higher priority than the rest of the domain.
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6. Conclusion

In this paper we presented the first control algorithm that develops per-
sistent coverage with reactive avoidance control laws. This is based on a
new model for the evolution of the coverage level with decay. Assuming
the unicycle model for the dynamics of the agents, we provide a controller
which combines local and global control laws guaranteeing full coverage of
the domain if there is no decay, even when there are non-convex obstacles or
unconnected domains. The controller also provides a persistent coverage if
there is a coverage decay. Furthermore we proposed a new bounded repulsive
avoidance control law and a strategy to combine coverage and avoidance ob-
jectives with a proof of collision avoidance. Finally, we provided simulation
results showing the behaviors of the algorithm and we discussed the choices
of the design parameters of the algorithm. An open issue is the problem of
developing coverage with a variable power of the coverage action in order to
save energy, and to keep a desired coverage level. Another research line is to
develop an adaptive behavior of the parameter which rules the importance
of the local and global control laws depending on the error.
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2013. Control and navigation in manoeuvres of formations of unmanned
mobile vehicles. European Journal of Control 19 (2), 157 – 171.

Smith, S., Schwager, M., Rus, D., 2012. Persistent robotic tasks: Monitoring
and sweeping in changing environments. IEEE Transactions on Robotics.
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